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1 Preliminaries

Learning quantum field theory requires knowledge of several other fields of physics and mathematics.
This section will attempt to give an overview of the information necessary for learning quantum
field theory.

1.1 Classical Mechanics

Classical mechanics attempts to describe the physical behavior and motion of macroscopic entities.
Newtonian physics was the first formulation of classical mechanics, and described the motion of
bodies using the forces acting on them. Later formulations of classical mechanics such as the
Lagrangian and Hamiltonian formulations (which describe the motion of bodies using energies)
come equipped with machinery that is necessary for quantum field theory.

1.1.1 Generalized Coordinates

The physical configuration of a classical system can be described using a system of coordinates
(such as Cartesian coordinates). However, for many complex problems, the use of such coordinates
can become cumbersome, and this is where generalized coordinates come in handy.

Generalized coordinates are a set of coordinates which describe the configuration of a system, and
are typically used to make it easier to calculate the solutions of equations of motion for the system.
In a system with n degrees of freedom, an arbitrary set of generalized coordinates for the system are
typically denoted by qi, where i = 1, . . . , n. Generalized velocities are denoted by q̇i (i = 1, . . . , n),
where the dot represents that it is the time derivative of the quantity, and the number of dots
represents which order derivative (e.g. q̈i is the acceleration).

For example, you can describe the motion of a pendulum using its x and y coordinates, but the
system can also be described with only one parameter if you take the angle that the pendulum
makes with respect to the vertical axis, θ, as the generalized coordinate. Since the pendulum only
has one degree of freedom, it makes sense that it can be described with only one parameter.

1.1.2 The Action and Euler-Lagrange Equations

In classical mechanics, the action is defined to be the following:

S[qi] =

∫ t2

t1

L(qi, q̇i, t) dt (1.1)

where L(qi, q̇i, t) is the Lagrangian of the system, given by the difference between the kinetic energy,
T , and the potential energy, V , of the system:

L(qi, q̇i, t) = T (q̇, t)− V (q, t) (1.2)

In nature, the path taken by a system between two states is the one that will extremize (typically
minimize) the action, S. This theorem is known as the principle of least action. Intuitively, the
value of S can be thought of as a ”cost” which is attributed to a given path, meaning the system
will follow the path that is the most efficient/least costly.
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The action is an important quantity, as calculating it for various paths allows for the true path
that the system will take to be determined.

A path is mathematically represented by a time-dependent position function (i.e. qi(t)). If we vary
this path slightly, as to introduce a small perturbation, the new path is as follows:

qnew(t) = qi(t) + ϵηi(t) (1.3)

Where ϵ is a small parameter and ηi(t) is an arbitrary function. This also means that the generalized
velocity will now be different, so that

q̇new(t) = q̇i(t) + ϵη̇i(t) (1.4)

We will stipulate that the end points of this new path are fixed, such that ηi(t1) = ηi(t2) = 0. Now,
we will calculate the action for this perturbed path:

S[qnew(t)] =

∫ t2

t1

L(qi(t) + ϵηi(t), q̇i(t) + ϵη̇i(t), t) dt (1.5)

We will now expand the Lagrangian to first order in ϵ using the multivariate Taylor expansion,
which is given by:

f(x, y) ≈ f(x0, y0) +
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) + . . . (1.6)

Because ϵ is a very small number, the higher order terms that contain ϵn, n > 1 are negligibly
small, so we can ignore them. So, expanding the Lagrangian yields the following:

L(qi(t) + ϵηi(t), q̇i(t) + ϵη̇i(t), t) ≈ L(qi, q̇i, t) + ϵ
∂L

∂qi
ηi(t) + ϵ

∂L

∂q̇i
η̇i(t) (1.7)

Note that the difference terms in equation 1.6, (x − x0) and (y − y0), equal ϵηi(t) and ϵη̇i(t)
respectively when we apply the Taylor expansion. Now, plugging this expression back into equation
1.5 gives

S[qnew(t)] =

∫ t2

t1

L(qi, q̇i, t) + ϵ
∂L

∂qi
ηi(t) + ϵ

∂L

∂q̇i
η̇i(t) dt (1.8)

If we exploit the linearity of integrals across sums, we find that the first integral is simply the
action, S[qi], of the original path, qi(t).

S[qnew(t)] = S[qi] +

∫ t2

t1

ϵ
∂L

∂qi
ηi(t) + ϵ

∂L

∂q̇i
η̇i(t) dt (1.9)

We can see clearly now that the remaining integral represents the variation in the action due to
the perturbation in the path, we will call this variation δS. As stated before, the principle of least
action states that the true path a system takes is the one which makes the action extremized. A
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consequence of this is that small variations in the path will not change the action. So this means
that δS = 0, and we can write it as so

δS = ϵ

∫ t2

t1

∂L

∂qi
ηi(t) +

∂L

∂q̇i
η̇i(t) dt = 0 (1.10)

Now, if we integrate the second term by parts, we are left with the following:

δS = ϵ

∫ t2

t1

∂L

∂qi
ηi(t) dt+

[
∂L

∂q̇i
η̇i(t)

]t2
t1

−
∫ t2

t1

d

dt

[
∂L

∂q̇

]
ηi(t) dt = 0 (1.11)

Because of the boundary conditions we previously stated (ηi(t1) = ηi(t2) = 0), the second term
goes to 0, and we are left with

δS = ϵ

∫ t2

t1

∂L

∂qi
ηi(t) dt−

∫ t2

t1

d

dt

[
∂L

∂q̇i

]
ηi(t) dt = 0

= ϵ

∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ηi(t) dt = 0

(1.12)

Since δS is equal to 0 and we know that ϵ is a non-zero number, and ηi(t) is an arbitrary function,
the term inside of the square brackets must be 0. Thus we have:

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 (1.13)

Equation 1.13 is known as the Euler-Lagrange equation and it is one of the important equations in
physics, as it allows for the derivation of the equations of motion of a system from the Lagrangian,
and thus, from the kinetic and potential energies of the system. It is equivalent to Newton’s second
law in classical mechanics, and lays the foundation for Lagrangian mechanics.

1.1.3 Lagrangian Mechanics

Lagrangian mechanics allows for the use of generalized coordinates, and in general is a far more
flexible approach for complex problems than Newtonian mechanics.

To solve a problem in this framework, it is important to find the Lagrangian for the system, or in
other words, the difference between the kinetic and potential energies of the system:

L = T − V (1.14)

To see how it works in action, lets revisit the pendulum problem that was referenced in 1.1.1.
As mentioned previously, the generalized coordinate that we will use will be the angle θ that the
pendulum makes with the vertical axis, the bob of the pendulum also has mass m and the string
is of length l. To construct the Lagrangian for this system, we will first find the kinetic energy, T:

T =
1

2
mv2 =

1

2
m(lθ̇)2

=
1

2
ml2θ̇2

(1.15)
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The only kind of potential energy that the bob possesses is gravitational potential energy, so V is
computed as follows:

V = mgh

= mg(l − cos θ)
(1.16)

So, now putting it all together, the Lagrangian is as follows:

L =
1

2
ml2θ̇2 −mg(l − cos θ) (1.17)

We are now ready to solve the Euler-Lagrange equation, which for this system looks like

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 (1.18)

To come up with the equation of motion for the pendulum, we will solve for each of the terms in
equation 1.18:

∂L

∂θ
= −mgl sin θ

d

dt

(
∂L

∂θ̇

)
= ml2θ̈

(1.19)

So, we arrive at the equation of motion for a simple pendulum:

ml2θ̈ +mgl sin θ = 0

θ̈ +
g

l
sin θ = 0

(1.20)

1.1.4 Hamiltonian Mechanics
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